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A Toy ModelofSea Ice Growth

A.S. Thorndike

My purpose here is to present a simplified treatment of the

growth of sea Ice. By ignoring many details, it is possible to obtain

several results that help to clarify the ways in which the sea Ice

cover will respond to climate change. Three models are discussed.

The first deals with the growth of sea Ice during the cold season.

The second describes the cycle of growth and melting for perennial

ice. The third model extends the second to account for the possibil-

ity that the Ice melts away entirely in the summer. In each case, the

objective is to understand what physical processes are most Impor-

tant, what Ice properties determine the ice behavior, and to which
climate variables the system is most sensitive.

Climate

Divide the year into a cold and a warm season, each of duration

Y. During the cold season, the average downwelling Iongwave radia-

tion is flwc which equals 180 W/m 2 in today's climate. In the warm

season, the downwelling radiation is f]ww = 270 W/m 2, and there is

shortwave radiation fsw = 200 W/m 2. (These values are from Maykut

and Untersteiner, 1971.) A fourth climate variable is the heat sup-
plied to the ice from the ocean, fw- Its value is not known, and it

surely varies in space and time. We will regard it as constant

throughout the year, and expect it to have a value in the range 0 to

I0 W/m 2 in the central Arctic. The four parameters flwc, flww, fsw,
and fw specify the climate.

To examine the response of the ice to changes in climate, we will

have in mind perturbations to the longwave fluxes, such as might
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accompany tropospheric warming or changes In atmospheric

composition:

flwc --->flwc + _

flww _ flww + _

Sea Ice Parameters

The Ice will be described by two variables, its thickness h and

surface temperature T. Other ice properties and their values used in

this paper are:

longwave emissivity e 1

thermal conductivity k 2 W/m/K

specific heat c 2 × 106 j/m3/K

latent heat L 3 × 108 J/m3

albedo (_ 0.65.

In taking these parameters to be constant, we ignore the strong

dependence some have on temperature and salinity. In effect, we

replace the thermal properties of sea ice with those of fresh ice. In

so doing, we give up the possibility of resolving the sea Ice behavior

within a few degrees of the freezing point.

Ice Growth

The black body radiation from the ice surface can be expressed as

a linear approximation to the Stefan-Boltzmann law, in the form A +

BT. Here A = 320 W/m 2 and B = 4 E _ (271.2) 3 = 4.6 W/m2/K. Here

o is the Stefan-Boltzmann constant, 5.7 x 10 -8 j/m2/s/K4, and

271.2 K is the freezing point of sea water.

In the cold season, and in the absence of upward heat flux from

below, the radiation from the Ice surface must balance the down-

welling longwave radiation. This implies

T = - (A - flwc)/B = - D/B = -29 ° C (1)

The quantity D = A - flwc is a convenient scale for the radiative

fluxes. It is the net radiation balance over a surface at the freezing

point. Similarly, the quantity -D/B is a natural scale for the surface

temperature. It is the minimum temperature the Ice surface can

attain.
For Ice of thickness h, having a linear temperature profile, heat is

conducted upward at the rate -kT/h, and this flux must be Included

In the surface energy balance:
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A + BT -- flwc - kT/h (2)

It follows that the surface temperature and the ice thickness are
related as

T = - Dh/(k + Bh), and h = - kT/(D + BT) (3)

These relations hold when the Ice is growing, because then the tem-

perature profile through the ice is approximately linear, and the

expression for the conductive heat flux is justified.

At the bottom of the Ice, the rate at which heat can be conducted

through the ice determines the rate of ice growth:

L dh/dt = - kT/h - fw {4}

After substituting for T, the equation can be integrated to give the
relationship between the thickness h, after time t, and the initial
thickness ho:

/ k(D - fw ) - fw Bh _ -

tB/L + kDfw2 l°g(k-_-_ f-_- _ J + B(h - ho)fwl =0 {5)

In the special case ho = 0, the logarithm can be expanded in the

form log (1 - [t) = -[t - [32/2, provided fw << D, leading to

L dh/dt = - kT/h - fw (6)

This result establishes k/B as a natural scale of ice thickness. B

determines how much the surface must cool to maintain radiative

equilibrium. Together with k, this fixes the conductive heat flux, and

therefore the ice growth. The value of k/B is about 0.4 m. It also

appears from this result that kL/BD is a natural time scale, having
the value of about 11 days. It is worth noting that the ocean heat

flux decreases the thickness through the linear factor (1 - fw/D).

With D = 140 W/m 2 and fw--- 1 W/m 2 the ocean heat flux has a

small effect on the Ice produced in one year, but we will see below

that it can have a large effect on the equilibrium thickness.

It can also be noted that a steady state solution to Equations (2)
and (4) is possible. The Ice must grow to a thickness where the con-

ductive heat flux equals fw. This occurs when h = (k/B)(D/f w - 1),

which is about 50 m. However, the time required to approach this

equilibrium is much longer than a single growing season, so the

model needs to be extended to account for the seasonal cycle of

growing and melting (see "A Model of the Perennial Ice Cover").

For very thin ice, t << kL/BD = 1 1 days, we have the further
approximation that

h = (D- fw)t/L (small t) (7)
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In this case, the conduction through the ice is not important. The

ice growth is determined completely by the net heat balance for the

slab, and the latent heat, and therefore grows at a constant rate.

For large t, t >> kL/BD, we obtain

h =(k/B)(1-fw/D)_J2BDt/kL (large t) (8)

which shows that h grows as t 1/2. The thicker the ice gets, the

slower it grows. Here the growth is regulated by the conduction of

heat through the slab. With time, the ice both cools and thickens,

but the combined effect is that the temperature gradient decreases,

which controls the rate at which heat can be removed from the bot-

tom surface, and thus the rate of ice growth.

The ice thickness depends on the climate through the variables D

= A - flwc and fw- It is interesting to note that in the coldest climate

possible, fiwc and fw = 0, the ice would only grow to h =

{k/B}{2kAY/BL}I/2 = 4 m in a single growing season, where Y = one-

half year.
Now consider the case ho > 0, as for ice which has survived the

summer. During the subsequent growing season, the ice will reach a

thickness h after time t. In the case where the new growth h - ho is

small compared to ho, we obtain

( kD f )t (h - ho << ho) (9)h-ho--__- w

This implies that the ice cannot grow thicker than {k/B)(D/fw - I), a

quantity that is sensitive to the ocean heat flux fw. Compare this

result with Equation (25}, below, which accounts for the annual

cycle of ice growth and melting.

Equation (5) can be solved for h numerically. Thus we can

express

h = H(hot) (10}

though we cannot write the function H explicitly.

The assumption of a linear temperature profile through the ice

has been essential in obtaining these results. As the ice grows, it

also cools, according to Equation (3}. There is an internal inconsis-

tency here. An element of ice cannot cool if the temperature profile

is linear there. The only way to avoid this kind of inconsistency is to

formulate the ice growth as a heat diffusion problem, as Maykut and

Untersteiner did. To estimate how large an error the assumption

introduces, note that the model properly accounts for the heat

released by the new ice growth, Ldh, but it does not account for the

heat which must be removed to cool the ice, dQ, where Q --- chT/2.

For ice that grows one meter in the winter, Ldh is 3 x I0 8 J/m 2. The
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heat storage term is (2 x 106 J/m/K)(l m)(-21 K)/2 = 2 x 107 J/m 2.
So we may expect errors of about 5 to 10% to arise because we have

not properly accounted for the heat storage (although in the next

section it is shown that a large part of the heat storage can easily be
accounted for).

A Model of the Perennial Ice Cover

Since the ice is characterized by its thickness and surface tempera-

ture, it is useful to plot its behavior as a trajectory in (h,T) space.
Figure 1 displays the results of the Maykut and Untersteiner model

this way. We will approximate the annual cycle as follows. Imagine a
slab of ice at the end of the melt season, having thickness h and

temperature T = 0 throughout. When the weather turns cold, the ice

cools until its surface temperature reaches the temperature appro-
priate for its thickness, Equation (3). Then it grows for the remain-
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Figure I. The equilibrium cycle for the standard case of the Maykut and
Untersteiner model, plotted in (h.T) space.
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Ing part of the cold season, according to the ice growth model of the

previous section. In the warm season, the ice first warms up to the

freezing point, and then melts. The cooling and warming processes

take place with no change in thickness. They account for the stor-

age of heat by the ice. The equations governing this four-process

cycle of cooling, growing, warming, and melting are

Cooling

D = A - flwe

T = -Dh/(k + Bh)

Q = - chT/2

Xc =Q/(A + BT/2- flwc -fw)

(II)

Growing

_g =Y-Tc

Tg:-Dhg/(k+Bhg)
{Equations 5 and 10)

(12)

Warming

Q=-chgTg/2

D=_ww+(1-a)fsw+fw-A-BTg/2

• w = Q/D

(13)

Melting

_m = Y - _w (14)

h = h a - "_w [flww + (1 - ot)fsw + fw - A]/L

where _ Is duration with subscripts c, g, w, and m indicating the

four processes.
A short program can be written to do these calculations. The

results (see Table 1) show that for the present climate, the ice is

attracted to a periodic orbit, as sketched in Figure 2. The ice is

saved from the two alternatives, melting completely or growing with-

out bound, by the negative feedback provided by the ice thickness. If

the ice is too thin in the fall, it will grow more in the winter than it

melts in the summer. If it is too thick in the fall, it grows less than it

melts. In either case, it approaches the equilibrium orbit.

For other climates, the orbit changes. For large enough perturba-

tions to the climate, the equilibrium cycle cannot be maintained. If

the climate is too warm, the ice melts completely in the summer; the
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Table 1: Results of model simulations

Perennial Ice Cover

(IV� m2) (W / m 2) ¢d) id) (m)

- 15 1 43 9.4 -32 44 9.1

-10 1 21 5.3 -30 23 4.8

0 1 7 2.9 -26 11 1.9

5 1 3 2.5 -25 8 1.1

I0 I I 2.2 -24 7 0.6

15 1 O. I 2.0 -22 6 0.2

0 2 5 2.7 -26 I0 1.6

0 5 3 2.3 -26 8 1.0

0 I0 0.5 1.8 -25 6 0.3

Seasonal Ice Cover

f w Wml Tml (_m} }_} _w Th(W/m2) {'W/m 2) _C) (d) (d) {d)

20 I 2 37 1.7 -2I 5 36

30 1 6 117 1.0 -16 2 115

37 I 9 170 0.3 -9 0.4 165

20 5 4 82 1.3 -19 3 82

20 lO 6 I19 0.9 -18 2 If9

hg and Tg are the ice thickness and temperature at the end of the growing season, h m is the thickness
at the end of the melting season, r e, r_v, rml, and _h are the durations of the processes which cool and

warm the ice, and cool and heat the mixed layer. 8 Is the perturbation to the longwave radiation fluxes.

fw is the upward flux of heat from the ocean. Trnl is the temperature of model's upper ocean layer.

model is patched up to treat this case below. If the climate is too

cold, the ice grows without bound. The behavior of the model as a

function of the perturbation 8 is sketched in Figure 3. The longwave

fluxes can vary up to about _+ 20 W/m 2 from the present climate

and still support an annual equilibrium cycle.

A Seasonal Ice Model

If the ice melts away before the end of the summer, the positive

heat balance at the surface must cause the upper ocean to warm.

The model of the preceding section can be modified to account for

this heat by including an upper ocean layer. The thickness of the

layer hml is assumed to be fixed at 50 m, and its temperature is

allowed to change. The layer is assumed to be well mixed, so that a

single temperature describes Its state. Begin the annual cycle at the

end of summer with the mixed layer having temperature Tml. We
calculate how long it takes for the mixed layer to cool, and then how

much ice will grow during the remainder of the cold season. During

the warm season, the ice must warm up to the freezing point, and
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Figure 2. The equilibrium cycle for the perennial ice model, under the
present climate; C is cooling, G is growing, W is warming, M is melting.

4

then melt, requiring times Xw and xm. The remainder of the warm

season Is spent heating the mixed layer. The model equations are:

Cooling the mixed layer:

Q = cwhmiTml

Xrnl = Q/(A + BTml/2 - flwc - fw)

(15)

Ice growth:

Xg = Y - _ml

T = -(A - flwc )h/(k + Bh)

(16)
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Figure 3. The maximum and minimum thicknesses in the annual cycle for
the perennial and seasonal ice models, as functions of the perturbation 8 to
the Iongwave fluxes.

Warming:

Q = - chT/2

D = flww + (1 - a)fsw + fw - A - BT/2

Xw = Q/D

Melting:

Tm = hL/[flww +(1-o_)fsw +fw -A]

Heating the mixed layer:

Xh = Y - Tw - Xm

D = flww + (I- aw)fsw + fw - A

Tml = (D/B)[I - exp(- B'I:h/ewhml )]

(17)

{18}

{19)
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For sea water the specific heat is c w = 4 × 106 j/m3/K and the

albedo is taken to be 0.2. The last equation is the result of integrat-

Ing the heat balance for the mixed layer:

d(c whmlTml)/dt = D - BTml (20)

For positive perturbations to the longwave fluxes In the range 17

W/m 2 < 5 < 40 W/m 2, a seasonal Ice pack Is possible (see Figure 3}.

For example, with 5 = 30 W/m 2, the mixed layer reaches 6°C. It

requires 117 days to cool off in the fall. In the remaining 65 days of
cold weather, the ice grows to 1 m, reaching a surface temperature

of-16°C. In the warm season, it takes 2 days to warm the Ice to the

freezing point, 65 days to melt it, and 115 days to warm the mixed

layer.
For climates warmer than 5 = 40 W/m 2, the mixed layer gets so

warm that it cannot cool completely in half a year, so ice never forms.

The Annual Energy Balance

The coldest surface temperature and the thickest ice occur at the

end of the freezing season. A simple energy argument leads to esti-

mates of these quantities. Since the temperature varies between T =

0 and T = Tg during the cold season and during the warm season,
the radiated energy for the entire year must be approximately

2Y(A + BTg/2}

In an equilibrium cycle, this must equal the energy reaching the ice,

which is

Y(flwc + fw)+ Y[flww + (1 - (_)fsw + fw ]

Equating these, and neglecting fw for the moment, leads to

Tg = IDm - Dg)/B (21)

in which Dg and D m are the net radiation balances over an ice sur-
face at the freezing point during the growing and melting seasons.

Using this expression in the surface heat balance, Equation (3),

gives the maximum thickness as

hg : (k/B)(Dg - Drn)/Dm (22)

With Dm= flww + {1 - C0fsw - A = 20 W/m 2, and Dg = A - flwc = 140

W/m 2, we obtain Tg = -26°C, and hg = 2.6 m. The expression for hg

underlines the sensitivity to the heat balance in the melting season.

As D m approaches zero, the ice grows without bound.
The simulations In "A Model of the Perennial Ice Cover" showed

that the perennial Ice cover gives way to a seasonal ice cover for a
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positive perturbation of 18 W/m 2 to the longwave fluxes. To see why
this is, we develop a condition on Dg and D m which just causes the

ice to melt completely at the end of the melting season. If h = 0 at

the beginning of the cold season, the thickness at the end of the
season will be, Equation (6),

h = (k/B)I(1 + 2BYDg/kL)I/2-1J (23)

In an equilibrium cycle, this must equal the ice melted in the warm

season, which Is approximately YDm/L. Combining these results
gives the constraint

(1 + BYDm/L) 2 = 1 + 2BYDg/kL {24)

which is plotted in Figure 4. For climates having (Dg, Din) below this
line, the ice will melt away completely during the summer. If we set

D m = 20 + 8 and Dg = 140 + 8 the equation requires 8 = 17 W/m 2, in
good agreement with the simulations.

Sensitivity to the Ocean Heat Flux

One result of the Maykut and Untersteiner simulations is a strong

dependence on the ocean heat flux. They showed that increasing fw
from 0 to 7 W/m 2 caused the equilibrium thickness to decrease

from about 6 m to zero. When one considers how poorly the ocean

heat flux is known, and the uncertainties In the other heat fluxes,
this sensitivity Is unsettling.

The present models have been run using different values of fw,
with results that support the Maykut and Untersteiner results. In

particular, holding other climate variables fixed, fw = 1 W/m 2 pro-

duced ice of thickness 1.9 m at the end of summer. With fw = 12
W/m 2 that thickness Is reduced to 0.1 m.

We can appreciate how this works by restoring fw to the expres-
sions for Tg and hg, Equations (21) and (22):

Tg = (Din -Dg + 2fw )/B (25)

k (Dg-D m +2fw)

hg = _ (Dm + 2fw)

From the first expression, we see that the surface temperature

responds to the ocean heat flux exactly as it responds to the radia-

tive fluxes. If an increment of heat A is added to the ice, in any way,
the Ice must respond by warming its surface A/B to maintain the

overall energy balance. However, the response of the ice thickness is
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Figure 4. The condition on the net radiation balances in the cooling and
melting seasons, Dg and D m, which causes the Ice just to vanish at the end

of the summer. The straight line represents climates in which the longwave

fluxes differ by 8from the present climate.

more subtle. An increase to fw decreases the numerator and

increases the denominator, and therefore has a larger effect on the

thickness than one might expect.

The Time Scale for the Ice Response

By combining the ice grown in the cold season and the ice melted
in the warm, we obtain the ice thickness after one year, beginning

with initial thickness h n,

l kD

Now the time scale for the ice to reach its equilibrium cycle is

F = hn _heq/(hn _hn+l ) (years) (27)
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If we also write

hn+l = heq +(hn - heq)dF/dt (28)

and substitute for hn+ 1 in (27), we find

r = (1- dF/dhn)-1 {29)

where the derivative is evaluated at the equilibrium thickness

heq = (k/B)(Dm D2fw - 1 ) (30)

This gives the time scale

F = (kL/YB) D
(Dm +2fw)2 ----3 yr (31)

Discussion

The essential mechanism at work is that the Ice adjusts its sur-

face temperature to maintain the energy balance at the surface. In

the present climate, the annual energy balance over a surface at the

melting point is D m - Dg = -120 W/m 2, meaning that a surface at T
= 0°C would lose 120 W/m 2 more than it receives. The surface

adjusts by cooling to about -26°C.

The second important idea is that during ice growth, the ice

thickness is related to its surface temperature; the colder the tem-

perature, the thicker the ice. Therefore we can assess the response

of the ice thickness to a climate perturbation, in the form of a

change dE in the energy reaching the surface, by evaluating

dT/dE and

dh/dE : dh/dT * aT/dE : -[(k + Bh)2/DBk] (32)

For h = 3 m, the sensitivity Is about -0.2 m for 1 W/m 2 Increase In

Incoming energy. Note that the sensitivity is a strong function of
thickness.

Thus the thickness is rather sensitive to the energy fluxes. Pertur-
bations of 10 W/m 2 can mean several meters of ice thickness. Never-

theless, the system can adjust to perturbations of this magnitude.

However, for larger fluctuations, the system cannot adjust. A

cooler climate in which the longwave fluxes were 20 W/m 2 less than

present (about 5°C of tropospheric cooling) would allow the Ice to

grow without bound. A positive perturbation of the same magnitude

would cause the ice to melt away completely in the summer, so that

the entire Arctic would support only a seasonal Ice cover. With a

positive perturbation of about 40 W/m 2, enough heat ls stored in
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the upper ocean during the warm season to prevent ice from form-

ing during the winter.
Of course, with a model that ignores many physical processes

and treats others badly, one cannot have great confidence In the

numerical results. Still, I expect the relationships between quanti-

ties In these models to have a qualitative validity, in the sense that

in a more careful model, the signs and powers in the expressions

would survive, while different numerical factors, of order unity,

might appear.
These ideas have implications for climate models that attempt to

simulate the Arctic Ice cover. First, the level of detail in the peren-

nial and seasonal models discussed here may be about right for use

In a climate model. The models surely allow an interactive Ice cover

without a heavy computational burden. A second point is that we

have found limits on errors that can be tolerated in the energy

fluxes supplied by the climate model to the ice. Fluxes in error by +

10 W/m 2 will not destroy the ice, but errors of +_ 20 W/m 2 will lead

to a qualitatively wrong ice pack. Finally, given the sensitivity of the

ice thickness and temperature to perturbations on the order of 10

W/m 2, and the likelihood that climate models will have this much

uncertainty for some time to come, it is not realistic to expect a cli-

mate model to reproduce the observed ice thickness, or to predict

how much the thickness will change. It is enough to ask that a cli-

mate model distinguish between a perennial ice cover and a sea-

sonal ice cover, or between an Ice cover and no ice at all.

Of course, the actual Arctic ice cover is too complicated for a toy

model. There is in fact a great range of thicknesses, all growing and

melting at different rates, and all responding to mechanical as well

as thermal forcing. I do not want to leave the impression that these

processes are unimportant.
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